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Abstract

We present a new Al task — Embod-
ied Question Answering (EmbodiedQA)
— where an agent is spawned at a random
location in a 3D environment and asked
a question (‘What color is the car?’). In
order to answer, the agent must first in-
telligently navigate to explore the envi-
ronment, gather necessary visual informa-
tion through first-person (egocentric) vi-
sion, and answer the question (‘orange’).

EmbodiedQA requires a range of Al skills
— language understanding, visual recogni-
tion, active perception, goal-driven nav-
igation, commonsense reasoning, long-
term memory, and grounding language
into actions. In this work, we de-
velop a dataset of questions and answers
in House3D environments (Wu et al.,
2018), evaluation metrics, and a hierarchi-
cal model trained with imitation and rein-
forcement learning for this task.

1 Introduction

The embodiment hypothesis is the idea that intelli-
gence emerges in the interaction of an agent with an
environment and as a result of sensorimotor activity.
(Smith and Gasser, 2005)
Our long-term goal is to build intelligent agents
that can perceive their environment (through vi-
sion, audition, or other sensors), communicate
(i.e., hold a natural language dialog grounded in
the environment), and act (e.g. aid humans by ex-
ecuting API calls or commands in a virtual or em-
bodied environment). In addition to being a funda-
mental scientific goal in artificial intelligence (Al),
even a small advance towards such intelligent sys-
tems can fundamentally change our lives — from
assistive dialog agents for the visually impaired,
to natural-language interaction with self-driving
cars, in-home robots, and personal assistants.

Figure 1: Embodied Question Answering tasks agents with
navigating rich 3D environments in order to answer ques-
tions. These agents must jointly learn language understand-
ing, visual reasoning, and goal-driven navigation to succeed.

As a step towards goal-driven agents that can
perceive, communicate, and execute actions, we
present a new Al task — Embodied Question An-
swering (EmbodiedQA) — along with a dataset of
questions in virtual environments, evaluation met-
rics, and a reinforcement learning (RL) model.

Concretely, the EmbodiedQA task is illustrated in
Fig. 1 — an agent is spawned at a random loca-
tion in an environment (a house or building) and
asked a question (e.g. ‘What color is the car?’).
The agent perceives its environment through first-
person egocentric vision and can perform a few
atomic actions (move-forward, turn, strafe, efc.).
The goal of the agent is to intelligently navi-
gate the environment and gather visual informa-
tion necessary for answering the question.

EmbodiedQA is a challenging task that subsumes
several fundamental problems as sub-tasks.
Clearly, the agent must understand language
(what is the question asking?) and vision (what
does a ‘car’ look like?), but it must also learn:

Active Perception: The agent may be spawned
anywhere in the environment and may not imme-
diately ‘see’ the pixels containing the answer to
the visual question (i.e. the car may not be vis-
ible). Thus, the agent must move to succeed —
controlling the pixels that it perceives. The agent
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must learn to map its visual input to the correct
actions based on its perception of the world, the
underlying physical constraints, and its under-
standing of the question.

Commonsense Reasoning: The agent is not
provided a floor-plan of the environment, and
must navigate from egocentric views alone.
Thus, it must learn common sense (Where am
1? Where are cars typically found? Where is the
garage with respect to me?) similar to how hu-
mans navigate in unfamiliar houses (The car is
probably in the garage, so I should find an exit).

Language Grounding: One commonly noted
shortcoming of modern vision-and-language
models is their lack of grounding — these mod-
els often fail to associate entities in text with
corresponding image pixels, relying instead on
dataset biases to respond seemingly intelligently
even when attending to irrelevant regions (Das
et al., 2016). In EmbodiedQA, we take a goal-
driven view of grounding — our agent grounds a
question not into pixels but into a sequence of
actions (‘garage’ means to navigate towards the
exterior where the ‘car’ is parked).

As a first step in this challenging space, we ju-
diciously scope out a problem space — environ-
ments, question types, and learning paradigm —
that allows us to augment sparse RL rewards with
imitation learning (showing the agent expert tra-
jectories) and reward shaping (Ng et al., 1999)
(giving intermediate ‘closer/farther’ navigation re-
wards). Specifically, our approach follows the re-
cent paradigm from robotics and deep RL (Levine
et al., 2016; Misra et al., 2017) — the training en-
vironments are sufficiently instrumented, and pro-
vide access to the agent location, RGB, depth &
semantic annotations of the visual environment,
and allow for computing obstacle-avoiding short-
est navigable paths from the agent to any target.

At test time, our agents operate entirely from ego-
centric RGB vision alone — no structured repre-
sentation of the environments, no access to a map,
no explicit localization of the agent or mapping
of the environment, no A* or any other heuris-
tic planning, no hand-coded knowledge about the
environment or task, and no pre-processing phase
for the agent to build a map of the environment.
The agent in its entirety — vision, language, navi-
gation, answering — is trained from raw sensory in-
put (pixels and words) to goal-driven multi-room
navigation to visual question answering!

Contributions.

We propose a new Al task: EmbodiedQA, where
an agent is spawned in an environment and must
intelligently navigate from egocentric vision
to gather the necessary information to answer
questions about the environment.

We introduce a hierarchical navigation module
that decomposes navigation into a ‘planner’ that
selects actions, and a ‘controller’ that executes
these primitive actions. When the agent decides
it has seen the required visual information, it
stops navigating and outputs an answer.

We initialize our agents with imitation learning
and show that agents can answer questions more
accurately after fine-tuning with RL — that is,
when allowed to control their own navigation for
the explicit purpose of answering questions ac-
curately. Unlike some prior work, we explicitly
test generalization to unseen environments.

We evaluate our agents in House3D (Wu
et al., 2018), a rich, interactive 3D environment
based on human-designed indoor scenes from
SUNCG (Song et al., 2017). These diverse, sim-
ulated environments enable us to test generaliza-
tion of our agent across floor-plans and object
configurations — without safety, privacy, expense
concerns inherent to real robotic platforms.

We introduce EQA, a dataset of visual questions
and answers grounded in House3D. The ques-
tion types test a range of agent abilities — scene
recognition (location), spatial reasoning
(preposition), color recognition (color).
While the EmbodiedQA task definition sup-
ports free-form natural language questions, we
represent each question in EQA as a functional
program that can be programmatically generated
and executed on the environment to determine
the answer. This enables us to control the
distribution of question-types and answers, deter
algorithms from exploiting dataset bias (Goyal
et al., 2017), and provide fine-grained break-
down of performance by skill.

We integrated House3D with Amazon Mechan-
ical Turk (AMT), allowing humans to remotely
operate the agent in real time, and collected ex-
pert demonstrations of question-guided naviga-
tion for EmbodiedQA that serve as a benchmark
to compare proposed and future models.



2 EQA: Questions In Environments

2.1 House3D: Simulated 3D Environments

We instantiate EmbodiedQA in House3D (Wu
et al., 2018), a recently introduced rich, simulated
environment based on 3D indoor scenes from the
SUNCG dataset (Song et al., 2017). We build
EQA on a pruned subset of environments from
House3D, across a total of 767 environments.

2.2 Question-Answer Generation

We draw inspiration from the CLEVR (Johnson
et al., 2017) dataset, and programmatically gen-
erate a dataset (EQA) of grounded questions and
answers. This gives us the ability to carefully
control the distribution of question-types and
answers in the dataset, and deter algorithms from
exploiting dataset bias. Overall, we have the
following question types in the EQA dataset:

location: ‘What room is the <OBJ> located in?’
— | color: ‘What color is the <OBJ>?’
; color_room: ‘What color is the <OBJ> in the
LCﬂ)‘ <ROOM>?’
preposition:
<OBJ> in the <ROOM>?’
existence: ‘Is there a <OBJ> in the <ROOM>?’
logical:
in the <ROOM>?’
count: ‘How many <OBJS> in the <ROOM>?’
room_count: ‘How many <ROOMS> in the house?’
distance: ‘Is the <OBJ1> closer to the <OBJ2>
than to the <OBJ3> in the <ROOM>?’
Environments  Unique Total Saior
Questions Questions Tocation
train 643 147 4246
val 67 104 506 25.9% ‘
color_room fps
test 57 105 529 preposition

Figure 2: Overview of the EQA v1 dataset including dataset
split statistics (left) and question type breakdown (right).

EQA v1 Statistics. The EQA v1 dataset consists
of over 5000 question across over 750 environ-
ments, referring to a total of 45 unique objects in 7
unique room types. The dataset is split into train,
val, test such that there is no overlap in environ-
ments across splits. Fig. 2 shows the dataset splits
and question type distribution. Approximately 6
questions are asked per environment on average,
22 at most, and 1 at fewest. There are relatively
few preposition questions as many frequently
occurring spatial relations are too easy to resolve
without exploration and fail the entropy filtering.

3 Hierarchical Model for EmbodiedQA

Vision. Our agent takes egocentric 224 x224
RGB images from the House3D renderer as in-
put, which we process with a CNN consisting of
4 {5x5 Conv, BatchNorm, ReLU, 2 x2 MaxPool}
blocks, producing a fixed-size representation.

Language. Questions are encoded with 2-layer
LSTMs with 128-d hidden states. While LSTMs
may be overkill for the simple questions in EQA
vl, it gives us the flexibility to expand to human-
written or more complex questions in future.

Navigation. Our planner-controller navigator
(PACMAN) decomposes navigation into a ‘plan-
ner’, that selects actions (forward, turn-left, turn-
right, stop), and a ‘controller’, that executes these
primitive actions a variable number of times (1,2,
...) before returning control back to the planner.
Intuitively, this structure separates the intent of the
agent (i.e. get to the other end of the room) from
the series of primitive actions (i.e. ‘forward, for-
ward, forward, ...’), and is reminiscent of hierar-
chical RL (Andreas et al., 2017; Oh et al., 2017,

‘What is <on/above/below/ext-to> thelessler et al., 2017). It also enables planning at

shorter timescales, strengthening gradient flows.

‘Is there a(n) <OBJ1> and a(n) <oBJ2>Question Answering. After the agent decides to

stop or a max number of actions (= 100) have been
taken, the question answering module is executed
to provide an answer based on attention over the
last 5 frames the agent has observed.

Training. We employ a two-stage training pro-
cess. First, the navigation and answering modules
are independently trained using supervised learn-
ing on automatically generated expert demonstra-
tions of navigation. Second, the navigation archi-
tecture is fine-tuned using policy gradients.

4 Experiments and Results

Question Answering Accuracy. Our agent (and
all baselines) produces a probability distribution
over 172 answers (colors, rooms, objects). We re-
port the mean rank (MR) of the ground-truth an-
swer in the answer list sorted by the agent’s be-
liefs, computed over test questions from EQA.

Navigation Accuracy. We evaluate navigation
performance by reporting the distance to the tar-
get object at navigation termination (dr), change
in distance to target from initial to final position
(da), and the smallest distance to the target at
any point in the episode (dpin ). All distances are
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Figure 3: Our navigator decomposes navigation into a planner and a controller. The planner selects actions and the controller
executes these actions for variable timesteps. Thus, the planner operates on shorter timescales, strengthening gradient flows.

Navigation QA

dr da dmin Yorp %r %stop MR
T_i Toso T-so T-o T-so T-so T-ro T-so T-so To1o Toso T-so T T-so Toso  T-1o  Toso  Toso T Toso Toso
- Reactive 2.09 2.72 3.14 -1.44 -1.09 -0.31 0.29 1.01 1.82 50% 49% 47% 52% 53% 48% - - - 3.18 3.56 3.31
E LSTM 1.75 2.37 290 -1.10 -0.74 -0.07 0.34 1.06 2.05 55% 53% 44% 59% 57% 50% 80% 75% 80% 3.35 3.07 3.55
g Reactive+Q 1.58 2.27 289 -0.94 -0.63 -0.06 0.31 1.09 1.96 52% 51% 45% 55% 57% 54% - - - 3.17 3.54 3.37
LSTM+Q 1.13 2.23 2.89 -0.48 -0.59 -0.06 0.28 097 191 63% 53% 45% 64% 59% 54% 80% T1% 68% 3.11 3.39 3.31
- PACMAN+Q 046 1.50 2.74 0.16 0.15 0.12 042 142 2.63 58% 54% 45% 60% 56% 46% 100% 100% 100% 3.09 3.13 325
P PACMAN-RL+Q  1.67 2.19 2.86 -1.05 -0.52 0.01 0.24 093 1.94 57% 56% 45% 65% 62% 52% 32% 32% 24% 3.13 2.99 3.22
i HumanNav* 0.81 0.81 0.81 044 1.62 285 0.33 033 033 86% 86% 86% 87% 89% 89% - - - - - -
3 ShortestPath+VQA - - - 0.85 2.78 4.86 - - - - - - - - - - - - 3.21 3.21 3.21

measured in meters along the shortest path to the
target. We also record the percentage of questions
for which an agent either terminates in (%rr) or
ever enters (%r ) the room containing the target
object(s). Finally, we also report the percentage of
episodes in which agents choose to terminate nav-
igation and answer before reaching the maximum
episode length (%stop). To sweep over the dif-
ficulty of the task, we spawn the agent 10, 30, or
50 actions away from the target and report each
metric for T 19, T30, T_50.

* All baselines are poor navigators. All base-
lines methods have negative da, i.e. they end
up farther from the target than where they start.
This confirms our intuition that EmbodiedQA is
indeed a difficult problem.

* Memory helps. All models start equally far
away from the target. Baselines augmented with
memory (LSTM vs. Reactive and LSTM-Q vs.
Reactive-Q) end closer to the target, i.e. achieve
smaller d, than those without.

* PACMAN Navigator performs best. Our
proposed navigator (PACMAN+Q) achieves the
smallest distance to target at termination (dr),
and the RL-finetuned navigator (PACMAN-
RL+Q) achieves highest answering accuracy.

* RL agent overshoots. We observe that while
PACMAN-RL+Q gets closest to the target (least
dmin) and enters the target room most often
(highest %r ), it does not end closest to the
target (does not achieve lowest dr). These
and our qualitative analysis suggests that this is

because RL-finetuned agents learn to explore,
with a lower stopping rate (%stop), and often
overshoot the target. This is consistent with
observations in literature (Misra et al., 2017).
This does not hurt QA accuracy because the
answerer can attend to the last 5 frames along
the trajectory, and can potentially be corrected
by including a small penalty for each action.
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