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Abstract

Real-time performance of human-robot di-
alogue is important for making the inter-
action effective and worthwhile. Contem-
porary approaches treat language under-
standing and generation as reactive pro-
cesses that construct a new inference or
inverse-semantics model upon receiving a
novel utterance. In this work, we con-
sider the proactive generation and sym-
bol grounding of likely relevant utterances
as a means of improving the computa-
tional efficiency of dialogue interaction.
We explore this approach in the navigation
domain as applied to a human teammate
providing navigation commands to an un-
manned ground vehicle.

1 INTRODUCTION

Effective human-robot teams that operate in com-
plex, dynamic, and uncertain environments must
share common representations of objects and other
spatial concepts used in the specification of tasks
that each may perform. Recent progress in natural
language understanding (NLU) and generation has
led to increasingly sophisticated algorithms that
infer distributions of symbols representing phys-
ical meaning or ask questions to clarify ambiguity.

A limitation of NLU approaches for collabora-
tive robots is that they react to inputs rather than
predict and precompute solutions for future inter-
actions. Consider the scenario illustrated in Fig-
ure 1, where an unmanned ground vehicle has en-
countered a scene with many different types of
semantic objects. A system that has proactively
grounded phrases that uniquely describe the dif-
ferent objects in the scene (e.g., “the green ball on
the left”) can bootstrap the probabilistic inference
with partial or complete solutions.

Figure 1: A scenario where we may require real-
time human-robot dialog.

We present a method for proactive symbol
grounding (PSG) in the context of NLU and ex-
plore its use for following robot instructions and
clarifying ambiguous responses via question gen-
eration using inverse semantics. The PSG is made
efficient by exploiting both Distributed Correspon-
dence Graphs (DCGs) (Howard et al., 2014) for
probabilistic inference and a bottom-up algorithm
for sampling candidate phrases.

2 BACKGROUND

The problem of providing robots with the capacity
to engage in dialogue can be considered to have
two main components: language understanding of
user-provided utterances and language generation
of responses for the robot to express to the user.

2.1 Language Understanding for Robots

Some research has leveraged rule-based ap-
proaches for a variety of applications (Dzifcak
et al., 2009; Kruijff et al., 2007). Other ef-
forts have emphasized probabilistic approaches
that learn models of the association between lan-
guage and robot actions or paths in the world (Vo-
gel and Jurafsky, 2010; Matuszek et al., 2010).



More recently, some approaches have posed the
problem as inference over a factor graph structured
according to the constituency parse of language
(Tellex et al., 2011; Paul et al., 2016).

A unifying characteristic of these works is their
reactive nature, waiting to receive an utterance be-
fore inferring any meaning. The approach pre-
sented in this paper proactively generates a space
of language unprompted and infers meaning for
samples within that space to be used as partial or
complete solutions for a novel utterance.

2.2 Language Generation for Dialogue

Traditional approaches for language generation
emphasize sentence planning elements such as
surface realization (Chen and Mooney, 2011;
Garoufi and Koller, 2011). However, in the con-
text of physically situated dialogue, it is necessary
to reason about environmental context. We are in-
terested in approaches that generate language by
inverting the NLU process.

Our work takes inspiration from Knepper et al.
(2015) in that we choose to invert a probabilistic
NLU model that uses environmental context dur-
ing inference. It thus becomes possible to generate
unambiguous language descriptions of particular
concepts. We generate a space of language from a
provided grammar and precompute the meaning of
phrase samples in order to bootstrap the language
generation process during interaction.

3 TECHNICAL APPROACH

Our formulation of NLU assumes conditional in-
dependence across linguistic and symbolic con-
stituents to efficiently infer a distribution of sym-
bols for an utterance. As used in equation 1,
Γ represents the space of symbolic constituents,
Λ represents a constituency parse tree, Φ defines
a space of correspondence variables, Φci are the
child phrase correspondence variables, and Υ is
the assumed environment model. For a more com-
plete description, we refer to Howard et al. (2014).

Φ∗ = arg max
φij∈Φ

|Λ|∏
i=1

|Γ|∏
j=1

p (φij , γij , λi,Φci,Υ) (1)

An overview of the architecture is illustrated
in Figure 2. The PSG module accepts both a
grammar definition and a list of perceived ob-
jects. It publishes updates of proactively grounded

phrases to the natural language symbol grounding
(NLSG) module, which also accepts the same list
of perceived objects. The parser module accepts a
text-based instruction and constructs a parse tree
from the grammar to send to the NLSG mod-
ule. The NSLG module searches that tree for
subphrases matching known proactively grounded
phrases and copies the symbols, thus eliminating
those phrases from online inference. Once infer-
ence completes, a list of actions is extracted from
the root of the instruction and processed by either
a motion planner when the action is understood or
by a dialog system when the action is ambiguous.

Mathematically, we consider PSG to reduce the
number of phrases that we need to evaluate for a
novel instruction, defined as a reduction in phrases
Λ̂ as a function of the original parse tree Λ and the
proactively grounded phrases PSG:

Λ̂ = f (Λ,PSG) (2)

We modify Equation 1 to use Λ̂.

Φ∗ = arg max
φij∈Φ

|Λ̂|∏
i=1

|Γ|∏
j=1

p (φij , γij , λi,Φci,Υ) (3)

The problem of inferring the proactively
grounded phrases PSG is one of predicting and
proactively grounding salient phrases that repre-
sent physical or abstract concepts in the envi-
ronment. We propose a bottom-up approach to
searching the grammar for relevant phrases that
first constructs a space of phrases that are only
composed of part-of-speech tags. The PSG mod-
ule randomly samples from this space and uses the
DCG to infer the meaning of each sample. The
solutions are stored and published to the NLSG
module for use during inference over a user’s
novel instruction. Once the space of candidate
phrases has exhausted, new candidates are con-
structed by searching the grammar for rules that
contain phrase types matching the roots of exist-
ing candidates. The process repeats until candi-
dates reach a specified depth and/or the environ-
ment changes sufficiently to invalidate solutions.

The next two sections describe our method for
evaluating the performance of the proposed algo-
rithm and present preliminary results of PSG for
improving the run-time performance of both NLU
and clarifying-response generation.
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Figure 2: The proposed PSG system architecture.

4 EXPERIMENTAL DESIGN

To evaluate the performance and applicability of
PSG, we propose two quantitative experiments fo-
cusing on runtime for language understanding and
generation. We expect the impact of PSG to de-
pend on the amount of time spent constructing and
grounding candidate phrases; thus, the first exper-
iment evaluates the number of grounded candidate
phrases and associated novel inference runtime for
increasing durations of time spent grounding can-
didate phrases. The second experiment is identi-
cal except we observe the runtime for generating
a disambiguating query using inverse semantics
rather than the runtime for language understand-
ing. Both experiments assume a symbolic repre-
sentation, grammar, and corpus of annotated ex-
amples used to train the DCG.

The corpus used in both experiments consists
of thirty-four navigation commands (e.g. “navi-
gate to the farthest cone on the right in the row of
cones”) consistent with the examples presented in
Paul et al. (2016). The commands are associated
with three different simulated worlds composed of
differently colored balls and cones.

We can also extract a grammar that is used
by the parser and defines the space of candidate
phrases for PSG. The grammar contains thirty in-
dividual words and nine phrase rules.

5 RESULTS

5.1 Example Inference

In the first part of our analysis, we consider the
impact of PSG on inference time for the phrase

“go to the blue ball on the right”. The parse tree
for this instruction is illustrated in Figure 3.
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go to the blue ball on the right

Figure 3: The parse tree for the instruction “go to
the blue ball on the right”

To quantify the impact of PSG, we consider
the runtime of NLU for increasing durations of
time spent grounding candidate phrases, (see Ta-
ble 1). As the number of grounded candidate
phrases increases with longer durations, the like-
lihood of producing relevant solutions for a novel
instruction also increases, thus reducing the num-
ber of phrases to evaluate at inference time. In
the case where PSG ran for 8 seconds, it provided
NLU with solutions for “the blue ball” and “on the
right”, leaving only three phrases to be evaluated.

PSG (sec) 0.0 2.0 4.0 6.0 8.0
Candidates 0 31 62 102 146
NLU (sec) 0.21 0.18 0.14 0.13 0.09

Table 1: The duration of time spent grounding
candidate phrases (PSG) versus inference runtime
(NLU) for “go to the blue ball on the right’.

5.2 Inverse Semantics
To demonstrate our approach to inverse semantics,
we consider the instruction “navigate to the blue
ball” in a cluttered ball/cone environment with two
blue balls of varying distance from the robot. The
most likely solution for this expression yielded no
symbols for the root, only providing symbols in-
dicating object type and color for the phrase “the
blue ball”. We can search the world model for ob-
jects that contain those properties (the two blue
balls in this case). To ask a clarifying response,
we can search for phrases whose root meanings
align with unambiguous labels for either ball. This
search process is effectively targeted PSG that ter-
minates when the unambiguous phrases are found;
thus, we can boostrap this process using the known
cadidate phrases produced by PSG.



After search, we find that the expressions “the
nearest blue ball” and “the farthest blue ball” un-
ambiguously describe the blue balls. We can thus
generate a template-based query using the com-
mand to ask “navigate to the farthest blue ball or
navigate to the nearest blue ball?”. We consider
the runtime of inverse semantics (IS) for increas-
ing durations of time spent grounding candidate
phrases (PSG) (see Table 2). As the number of
grounded candidates produced increases, the num-
ber of phrases IS must evaluate decreases. In the
case where PSG ran for 10 seconds, IS was instan-
teous because the required unambigous phrases
existed in the PSG-produced candidate phrases.

PSG (sec) 0.0 2.0 4.0 6.0 8.0 10.0
IS (sec) 9.0 7.4 5.4 3.4 1.5 0.0

Table 2: The duration of time spent grounding
candidate phrases (PSG) versus inverse semantics
runtime (IS) for generating clarifying dialog for
the instruction “navigate to the blue ball’.

6 DISCUSSION/CONCLUSION

The work presented here can be extended to im-
prove computational efficiency in several ways.
Prior interactions may inform the likelihood of
candidate phrases. Consider a human operator
providing an instruction “pick up the ball near the
truck”. It is reasonable to expect the next instruc-
tion will be related, for example “place it in the
back of the truck”. Modeling the likelihood of
candidate phrases based on past dialog interac-
tions is expected to outperform random sampling.

One challenge of the proposed approach is
deciding when the environment has sufficiently
changed to invalidate precomputed solutions to
candidate phrases. A model that efficiently de-
termines the subset of grounded candidate phrases
that have been invalidated by the change in the en-
vironment would outperform our naive approach
of treating the full set as invalid.

In this paper we present a framework for im-
proving the runtime performance of physically sit-
uated human-robot dialog via PSG. Experimen-
tal results demonstrate improved runtime perfor-
mance for NLU and for inverse semantics when
generating clarifying responses. In future work we
aim to study the topics described above and apply
our approach to physical platforms.
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